10 research outputs found

    Cellulo: Versatile Handheld Robots for Education

    Get PDF
    In this article, we present Cellulo, a novel robotic platform that investigates the intersection of three ideas for robotics in education: designing the robots to be versatile and generic tools; blending robots into the classroom by designing them to be pervasive objects and by creating tight interactions with (already pervasive) paper; and finally considering the practical constraints of real classrooms at every stage of the design. Our platform results from these considerations and builds on a unique combination of technologies: groups of handheld haptic-enabled robots, tablets and activity sheets printed on regular paper. The robots feature holonomic motion, haptic feedback capability and high accuracy localization through a microdot pattern overlaid on top of the activity sheets, while remaining affordable (robots cost about EUR 125 at the prototype stage) and classroom-friendly. We present the platform and report on our first interaction studies, involving about 230 children

    Suisse-Israël : scandales et collaboration dans le domaine militaire, 1967-1973

    No full text

    An Active Uprighting Mechanism for Flying Robots

    No full text

    UNI-Copter: A portable single-rotor-powered spherical unmanned aerial vehicle (UAV) with an easy-to-assemble and flexible structure

    No full text
    This paper presents the design and modeling of the UNI-Copter, a portable spherical unmanned aerial vehicle (UAV) that is powered by a single rotor. This type of single-rotor spherical UAV has many advantages over other types of multi-rotor UAVs, but the spherical external structure takes up more volume, thereby reducing its portability. We focus on designing and building the UNI-Copter to provide ease of assembly and portability while taking advantage of the existing spherical structure. This paper explains our design concepts and the development process of improving the performance through various prototypes. We also verify flight stability of our new design by conducting several flight tests. To do so, a mathematical model of the UNI-Copter is derived in detail, and then we implement a state feedback controller for hovering flight. As a result, the indoor flight tests show stable performance, and the outdoor flight tests show that stable performance could also be achieved provided that the wind speed is low
    corecore